3.5.97 \(\int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx\) [497]

3.5.97.1 Optimal result
3.5.97.2 Mathematica [A] (verified)
3.5.97.3 Rubi [A] (verified)
3.5.97.4 Maple [A] (verified)
3.5.97.5 Fricas [B] (verification not implemented)
3.5.97.6 Sympy [F(-1)]
3.5.97.7 Maxima [F(-2)]
3.5.97.8 Giac [F(-1)]
3.5.97.9 Mupad [F(-1)]

3.5.97.1 Optimal result

Integrand size = 21, antiderivative size = 117 \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=-\frac {(a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )}{d}+\frac {(a+b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )}{d}-\frac {4 a b \sqrt {a+b \sin (c+d x)}}{d}-\frac {2 b (a+b \sin (c+d x))^{3/2}}{3 d} \]

output
-(a-b)^(5/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a-b)^(1/2))/d+(a+b)^(5/2)*arc 
tanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))/d-2/3*b*(a+b*sin(d*x+c))^(3/2)/d- 
4*a*b*(a+b*sin(d*x+c))^(1/2)/d
 
3.5.97.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.90 \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {-3 (a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )+3 (a+b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )-2 b \sqrt {a+b \sin (c+d x)} (7 a+b \sin (c+d x))}{3 d} \]

input
Integrate[Sec[c + d*x]*(a + b*Sin[c + d*x])^(5/2),x]
 
output
(-3*(a - b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]] + 3*(a + b 
)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]] - 2*b*Sqrt[a + b*Sin 
[c + d*x]]*(7*a + b*Sin[c + d*x]))/(3*d)
 
3.5.97.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.04, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3147, 481, 25, 653, 25, 654, 1480, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \sin (c+d x))^{5/2}}{\cos (c+d x)}dx\)

\(\Big \downarrow \) 3147

\(\displaystyle \frac {b \int \frac {(a+b \sin (c+d x))^{5/2}}{b^2-b^2 \sin ^2(c+d x)}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 481

\(\displaystyle \frac {b \left (-\int -\frac {\sqrt {a+b \sin (c+d x)} \left (a^2+2 b \sin (c+d x) a+b^2\right )}{b^2-b^2 \sin ^2(c+d x)}d(b \sin (c+d x))-\frac {2}{3} (a+b \sin (c+d x))^{3/2}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b \left (\int \frac {\sqrt {a+b \sin (c+d x)} \left (a^2+2 b \sin (c+d x) a+b^2\right )}{b^2-b^2 \sin ^2(c+d x)}d(b \sin (c+d x))-\frac {2}{3} (a+b \sin (c+d x))^{3/2}\right )}{d}\)

\(\Big \downarrow \) 653

\(\displaystyle \frac {b \left (-\int -\frac {a \left (a^2+3 b^2\right )+b \left (3 a^2+b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )}d(b \sin (c+d x))-\frac {2}{3} (a+b \sin (c+d x))^{3/2}-4 a \sqrt {a+b \sin (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b \left (\int \frac {a \left (a^2+3 b^2\right )+b \left (3 a^2+b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )}d(b \sin (c+d x))-\frac {2}{3} (a+b \sin (c+d x))^{3/2}-4 a \sqrt {a+b \sin (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 654

\(\displaystyle \frac {b \left (2 \int \frac {2 a \left (a^2-b^2\right )-b^2 \left (3 a^2+b^2\right ) \sin ^2(c+d x)}{b^4 \sin ^4(c+d x)-2 a b^2 \sin ^2(c+d x)+a^2-b^2}d\sqrt {a+b \sin (c+d x)}-\frac {2}{3} (a+b \sin (c+d x))^{3/2}-4 a \sqrt {a+b \sin (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {b \left (2 \left (\frac {(a-b)^3 \int \frac {1}{b^2 \sin ^2(c+d x)-a+b}d\sqrt {a+b \sin (c+d x)}}{2 b}-\frac {(a+b)^3 \int \frac {1}{b^2 \sin ^2(c+d x)-a-b}d\sqrt {a+b \sin (c+d x)}}{2 b}\right )-\frac {2}{3} (a+b \sin (c+d x))^{3/2}-4 a \sqrt {a+b \sin (c+d x)}\right )}{d}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {b \left (2 \left (\frac {(a+b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )}{2 b}-\frac {(a-b)^{5/2} \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )}{2 b}\right )-\frac {2}{3} (a+b \sin (c+d x))^{3/2}-4 a \sqrt {a+b \sin (c+d x)}\right )}{d}\)

input
Int[Sec[c + d*x]*(a + b*Sin[c + d*x])^(5/2),x]
 
output
(b*(2*(-1/2*((a - b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/ 
b + ((a + b)^(5/2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]])/(2*b)) - 
 4*a*Sqrt[a + b*Sin[c + d*x]] - (2*(a + b*Sin[c + d*x])^(3/2))/3))/d
 

3.5.97.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 481
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c 
 + d*x)^(n - 1)/(b*(n - 1))), x] + Simp[1/b   Int[(c + d*x)^(n - 2)*(Simp[b 
*c^2 - a*d^2 + 2*b*c*d*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] 
 && GtQ[n, 1]
 

rule 653
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), 
 x_Symbol] :> Simp[g*((d + e*x)^m/(c*m)), x] + Simp[1/c   Int[(d + e*x)^(m 
- 1)*(Simp[c*d*f - a*e*g + (g*c*d + c*e*f)*x, x]/(a + c*x^2)), x], x] /; Fr 
eeQ[{a, c, d, e, f, g}, x] && FractionQ[m] && GtQ[m, 0]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3147
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^m*(b^2 - x^2)^((p - 1) 
/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p 
 - 1)/2] && NeQ[a^2 - b^2, 0]
 
3.5.97.4 Maple [A] (verified)

Time = 1.89 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.19

method result size
default \(-\frac {2 b \left (\frac {\left (a +b \sin \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 a \sqrt {a +b \sin \left (d x +c \right )}+\frac {\left (-a^{3}+3 a^{2} b -3 a \,b^{2}+b^{3}\right ) \arctan \left (\frac {\sqrt {a +b \sin \left (d x +c \right )}}{\sqrt {-a +b}}\right )}{2 b \sqrt {-a +b}}-\frac {\left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right ) \operatorname {arctanh}\left (\frac {\sqrt {a +b \sin \left (d x +c \right )}}{\sqrt {a +b}}\right )}{2 b \sqrt {a +b}}\right )}{d}\) \(139\)

input
int(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-2*b*(1/3*(a+b*sin(d*x+c))^(3/2)+2*a*(a+b*sin(d*x+c))^(1/2)+1/2*(-a^3+3*a^ 
2*b-3*a*b^2+b^3)/b/(-a+b)^(1/2)*arctan((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2) 
)-1/2*(a^3+3*a^2*b+3*a*b^2+b^3)/b/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/ 
2)/(a+b)^(1/2)))/d
 
3.5.97.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 347 vs. \(2 (99) = 198\).

Time = 3.29 (sec) , antiderivative size = 1937, normalized size of antiderivative = 16.56 \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/24*(3*(a^2 + 2*a*b + b^2)*sqrt(a + b)*log((b^4*cos(d*x + c)^4 + 128*a^4 
 + 256*a^3*b + 320*a^2*b^2 + 256*a*b^3 + 72*b^4 - 8*(20*a^2*b^2 + 28*a*b^3 
 + 9*b^4)*cos(d*x + c)^2 + 8*(16*a^3 + 24*a^2*b + 20*a*b^2 + 8*b^3 - (10*a 
*b^2 + 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x + c)^2 - 24*a^2*b - 28*a*b^2 - 
 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a + b) + 4*(64*a^3*b + 
 112*a^2*b^2 + 64*a*b^3 + 14*b^4 - (8*a*b^3 + 7*b^4)*cos(d*x + c)^2)*sin(d 
*x + c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2)*sin(d 
*x + c) + 8)) + 3*(a^2 - 2*a*b + b^2)*sqrt(a - b)*log((b^4*cos(d*x + c)^4 
+ 128*a^4 - 256*a^3*b + 320*a^2*b^2 - 256*a*b^3 + 72*b^4 - 8*(20*a^2*b^2 - 
 28*a*b^3 + 9*b^4)*cos(d*x + c)^2 - 8*(16*a^3 - 24*a^2*b + 20*a*b^2 - 8*b^ 
3 - (10*a*b^2 - 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x + c)^2 - 24*a^2*b + 2 
8*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a - b) + 4*(6 
4*a^3*b - 112*a^2*b^2 + 64*a*b^3 - 14*b^4 - (8*a*b^3 - 7*b^4)*cos(d*x + c) 
^2)*sin(d*x + c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 
 2)*sin(d*x + c) + 8)) - 16*(b^2*sin(d*x + c) + 7*a*b)*sqrt(b*sin(d*x + c) 
 + a))/d, -1/24*(6*(a^2 + 2*a*b + b^2)*sqrt(-a - b)*arctan(-1/4*(b^2*cos(d 
*x + c)^2 - 8*a^2 - 8*a*b - 2*b^2 - 2*(4*a*b + 3*b^2)*sin(d*x + c))*sqrt(b 
*sin(d*x + c) + a)*sqrt(-a - b)/(2*a^3 + 3*a^2*b + 2*a*b^2 + b^3 - (a*b^2 
+ b^3)*cos(d*x + c)^2 + (3*a^2*b + 4*a*b^2 + b^3)*sin(d*x + c))) - 3*(a^2 
- 2*a*b + b^2)*sqrt(a - b)*log((b^4*cos(d*x + c)^4 + 128*a^4 - 256*a^3*...
 
3.5.97.6 Sympy [F(-1)]

Timed out. \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)*(a+b*sin(d*x+c))**(5/2),x)
 
output
Timed out
 
3.5.97.7 Maxima [F(-2)]

Exception generated. \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a-4*b>0)', see `assume?` for m 
ore detail
 
3.5.97.8 Giac [F(-1)]

Timed out. \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)*(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.5.97.9 Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{5/2}}{\cos \left (c+d\,x\right )} \,d x \]

input
int((a + b*sin(c + d*x))^(5/2)/cos(c + d*x),x)
 
output
int((a + b*sin(c + d*x))^(5/2)/cos(c + d*x), x)